Navigation

    • Register
    • Login
    • Search
    • Categories
    • Recent
    • Tags
    • Users
    • Groups
    • Solved
    • Unsolved
    • Search
    1. Home
    2. monomonnik
    3. Best
    • Profile
    • Following
    • Followers
    • Topics
    • Posts
    • Best
    • Groups

    Best posts made by monomonnik

    • Round Corners

      The code responsible for the rounding of the paths in a small animation I made.

      DEBUG = False
      
      # A path has points.
      # A point has only an anchor [(x,y)], or has an anchor and in and out point [(x,y), (x,y), (x,y)].
      # To close a path, repeat the first point at the last position.
      jagged_line =[[(500,210)], [(400,250)], [(600,350)], [(450,600)], [(500,790)]]
      rectangle =[[(220,220)], [(780,220)], [(780,780)], [(220,780)], [(220,220)]]
      circle = [[(500.0, 800.0), (335.0, 800.0), (665.0, 800.0)], [(800.0, 500.0), (800.0, 665.0), (800.0, 335.0)], [(500.0, 200.0), (665.0, 200.0), (335.0, 200.0)], [(200.0, 500.0), (200.0, 335.0), (200.0, 665.0)], [(500.0, 800.0), (335.0, 800.0), (665.0, 800.0)]]
      
      
      def draw(path):
          bez = BezierPath()
          bez.moveTo(path[0][0])
          for i in range(1, len(path)):
              p0 = path[i-1]
              p1 = path[i]
              if len(p0) == 1 and len(p1) == 1:
                  # straight line between points
                  bez.lineTo(p1[0])
              elif len(p0) == 3 and len(p1) == 1:
                  # from curve point to straight point
                  bez.curveTo(p0[2], p1[0], p1[0])
              elif len(p0) == 1 and len(p1) == 3:
                  # from straight point to curve point
                  bez.curveTo(p0[0], p1[1], p1[0])
              elif len(p0) == 3 and len(p1) == 3:
                  # curve point on both sides
                  bez.curveTo(p0[2], p1[1], p1[0])
          if path[-1] == path[0]:
              bez.closePath()
          drawPath(bez)
      
      
      def round_corners(path, roundness):
          if len(path) > 2:
              new_path = []
              new_path.append(path[0])
              new_path.append(path[1])
              for i in range(1, len(path) - 1):
                  p1 = new_path[i - 1]
                  p2 = path[i]
                  p3 = path[i + 1]
                  p1, p2, p3 = round_segment(p1, p2, p3, roundness)
                  new_path[i - 1] = p1
                  new_path[i] = p2
                  new_path.append(p3)
              # If the path is closed, we need (the handle of) the first point 
              if path[-1] == path[0]:
                  p1 = new_path[-2]
                  p2 = path[0]
                  p3 = new_path[1]
                  p1, p2, p3 = round_segment(p1, p2, p3, roundness)
                  new_path[-2] = p1
                  new_path[-1] = p2
                  new_path[0] = p2
              return new_path
          else:
              return path
      
      
      def round_segment(p1, p2, p3, roundness):
          if roundable(p1, p2, p3):
              p2_in, p2_out = create_handles(p1[0], p2[0], p3[0], roundness)
              p2 = [p2[0], p2_in, p2_out]
          return p1, p2, p3
      
      
      def roundable(p1, p2, p3):
          # If two of the three points are in the same spot,
          # we can’t calculate a curve between two points.
          p1_anchor = p1[0]
          p2_anchor = p2[0]
          p3_anchor = p3[0]
          d12 = distance_between(p1_anchor, p2_anchor)
          d23 = distance_between(p2_anchor, p3_anchor)
          if d12 == 0 or d23 == 0:
              return False
          else:
              return True
      
      
      def create_handles(A, B, C, smoothness):
          # A is the point before point B
          # B is the point to create the handles for
          # C is the point after point B
          d_AB = distance_between(A, B)
          d_BC = distance_between(B, C)
          # Create an isosceles triangle A, B, p4 based on triangle A, B, C.
          # Side B, p4 is the same length as side A, B.
          # Side B, p4 has the same direction as side B, C
          p4_x = ((C[0] - B[0]) * (d_AB / d_BC)) + B[0]
          p4_y = ((C[1] - B[1]) * (d_AB / d_BC)) + B[1]
          p4 = (p4_x, p4_y)
          
          if DEBUG:
              draw_handle(B, p4)
          
          # Calculate a point p5 on the base of the isosceles triangle,
          # exactly in between A and B.
          p5_x = A[0] + ((p4[0] - A[0]) / 2)
          p5_y = A[1] + ((p4[1] - A[1]) / 2)
          p5 = (p5_x, p5_y)
      
          if DEBUG:
              draw_point(p5, 10)
              draw_line(A, p4)
      
          # The line from the top of the isosceles triangle B to 
          # the point p5 on the base of that triangle
          # divides the corner p1, p2, p3 in two equal parts
      
          if DEBUG:
              draw_line(B, p5)
      
          # Direction of the handles is perpendicular
          vx = p5[0] - B[0]
          vy = p5[1] - B[1]
          handle_vx = 0
          handle_vy = 0 
          if vx == 0 and vy == 0:
              # The three points are on one line, so there will never be a curve.
              pass
          elif vx == 0:
              # prevent a possible division by 0
              handle_vx = 1
              handle_vy = 0
          elif vy == 0:
              # prevent a possible division by 0
              handle_vx = 0
              handle_vy = 1
          elif abs(vx) < abs(vy):
              handle_vx = 1
              handle_vy = vx / vy
          else:
              handle_vx = vy / vx
              handle_vy = 1
      
          # Define handles
          handle_a = (B[0] + handle_vx, B[1] - handle_vy)
          handle_b = (B[0] - handle_vx, B[1] + handle_vy)
      
          # The handle closest to point A will be the incoming handle of point B
          d_ha_A = distance_between(A, handle_a)
          d_hb_A = distance_between(A, handle_b)
      
          # I have to make this better. Also, where’s that 0.8 coming from? What was I thinking?
          incoming_handle_lenght = d_AB * smoothness
          outgoing_handle_length = d_BC * smoothness
          total_handle_length = incoming_handle_lenght + outgoing_handle_length
          max_handle_length = 0.8 * total_handle_length
          if incoming_handle_lenght > max_handle_length:
              outgoing_handle_length += incoming_handle_lenght - max_handle_length
              incoming_handle_lenght = max_handle_length
          if outgoing_handle_length > max_handle_length:
              incoming_handle_lenght += outgoing_handle_length - max_handle_length
              outgoing_handle_length = max_handle_length
          
          # finally, the in and out points
          if d_ha_A < d_hb_A:
              B_incoming = (B[0] + handle_vx * incoming_handle_lenght, B[1] - handle_vy * incoming_handle_lenght)
              B_outgoing = (B[0] - handle_vx * outgoing_handle_length, B[1] + handle_vy * outgoing_handle_length) 
          else:
              B_incoming = (B[0] - handle_vx * incoming_handle_lenght, B[1] + handle_vy * incoming_handle_lenght) 
              B_outgoing = (B[0] + handle_vx * outgoing_handle_length, B[1] - handle_vy * outgoing_handle_length)
      
          if DEBUG:
              draw_point(B_incoming, 6)
              draw_point(B_outgoing, 6)
              draw_line(B, B_incoming)
              draw_line(B, B_outgoing)
              draw_line(A, B)
      
          return B_incoming, B_outgoing
      
      
      def distance_between(p1, p2):
          dx = p2[0] - p1[0]
          dy = p2[1] - p1[1]
          return pow((dx * dx + dy * dy), 0.5)
      
      
      def draw_point(point, size):
          with savedState():
              fill(0, 0.7, 1)
              stroke(None)
              oval(point[0] - 0.5 * size, point[1] - 0.5 * size, size, size)
      
      
      def draw_line(a, b):
          with savedState():
              fill(None)
              strokeWidth(1)
              stroke(0, 0.7, 1)
              line((100, 100), (900, 900))
              line(a, b)
      
      
      def draw_handle(p, h):
          draw_point(p, 9)
          draw_line(p, h)
      
      
      fill(None)
      
      # Drawing the original shape and the rounded shape, slightly thicker.
      stroke(1, 0, 0)
      strokeWidth(2)
      draw(jagged_line)
      rounded_line = round_corners(jagged_line, 0.4)
      strokeWidth(4)
      draw(rounded_line)
      
      # A rounding of 0.28 seems to get me as close to a circle as I can get.
      stroke(0, 1, 0)
      strokeWidth(2)
      draw(rectangle)
      rounded_rectangle = round_corners(rectangle, 0.28)
      strokeWidth(4)
      draw(rounded_rectangle)
      
      # Rounding an oval by zero results in a rhombus.
      stroke(0, 0, 1)
      strokeWidth(2)
      draw(circle)
      rounded_circle = round_corners(circle, 0)
      strokeWidth(4)
      draw(rounded_circle)
      
      

      export.png

      posted in Code snippets
      monomonnik
      monomonnik
    • RE: Drawbot Preferences

      @rohernandezz You don’t have ~/Library/Preferences/com.drawbot.plist ?

      posted in General Discussion
      monomonnik
      monomonnik
    • RE: Is it possible do this processing.gif in drawbot?

      Almost the same code, but instead of drawing a grid we draw 1000 circles randomly. As they have to stay in the same place, we save their locations in an array.

      (Also in this script some nice code to have if you want to publish animated gifs; a way to reduce the colours in the gif.)

      
      import random
      import struct
      
      frames = 24
      page_size = 1000
      number_of_circles = 1000
      min_dot_size = 10
      max_dot_size = 70
      radius = 200
      
      
      # create color table for gif
      # https://stackoverflow.com/questions/6269765/what-does-the-b-character-do-in-front-of-a-string-literal
      table = b""
      greys = [0,85,170,255]
      for i in greys:
          r = struct.pack(">B", i)
          g = struct.pack(">B", i)
          b = struct.pack(">B", i)
          table += r + g + b # + a
      
      
      def draw_dot(center, diameter): 
          x = center[0] - diameter / 2
          y = center[1] - diameter / 2
          oval(x, y, diameter, diameter)
      
      
      # Generate circles, randomly distributed
      circles = []
      for i in range(number_of_circles):
          x = random.randint(0,page_size)
          y = random.randint(0,page_size)
          circles.append((x,y))
      
      
      for f in range(frames):
          percentage_animated = f / frames
          newPage()
          
          fill(0)
          rect(0, 0, page_size, page_size)
      
          for c in circles:
              x = c[0]
              y = c[1]
              distance = pow( (pow(x - page_size / 2, 2 ) + pow(y - page_size / 2, 2)), 0.5)
              distance = distance - percentage_animated * radius * 2
              distance = distance % (radius * 2)
              percentage = distance / radius
              if percentage > 1:
                  percentage = 2 - percentage
              dot_size = min_dot_size + percentage * (max_dot_size - min_dot_size)
              fill(None)
              stroke(1)
              draw_dot((x,y), dot_size)
              
      saveImage("animated.gif", imageGIFRGBColorTable = table)
      

      animated.gif

      posted in General Discussion
      monomonnik
      monomonnik
    • RE: Is it possible do this processing.gif in drawbot?
      frames = 24
      page_size = 1000
      grid_size = 20
      grid_spacing = page_size / grid_size
      min_dot_size = 10
      max_dot_size = 50
      radius = 100
      
      def draw_dot(center, diameter): 
          x = center[0] - diameter / 2
          y = center[1] - diameter / 2
          oval(x, y, diameter, diameter)
      
      for f in range(frames):
          percentage_animated = f / frames
          newPage()
          
          fill(0)
          rect(0, 0, page_size, page_size)
      
          for row in range(grid_size):
              for column in range(grid_size):
                  x = row * grid_spacing + grid_spacing / 2
                  y = column * grid_spacing + grid_spacing / 2
                  # Calculate distance from (x,y) of the dot to the center of the page
                  distance = pow( (pow(x - page_size / 2, 2 ) + pow(y - page_size / 2, 2)), 0.5)
                  # The wave must seem to move, so for every frame in the 
                  # animation, add a precentage of the length of the wave.
                  # Add or substract to change direction.
                  distance = distance - percentage_animated * radius * 2
                  # Use modulo to get a distance between 0 and double the radius
                  distance = distance % (radius * 2)
                  # The wave has a lenghth of double the radius. In the 
                  # first halve of the lenght, the dots get larger, in the 
                  # second halve the dots get smaller.
                  # So, we calculate a percentage between 0 and 2, and when
                  # the percentage is larger than 1, we count backwards.
                  percentage = distance / radius
                  if percentage > 1:
                      percentage = 2 - percentage
                  dot_size = min_dot_size + percentage * (max_dot_size - min_dot_size)
                  fill(1)
                  draw_dot((x,y), dot_size)
              
      saveImage("animated.gif")
      
      posted in General Discussion
      monomonnik
      monomonnik
    • donut

      donut.png

      radius = 300
      circle_size = 300
      step = 3
      x, y = 500, 500
      
      fill(1)
      stroke(0)
      
      for d in range(0, 360, step):
          circle1 = BezierPath()
          circle1.oval(x - circle_size / 2, y - circle_size / 2, circle_size, circle_size)
          circle1.translate(0, radius)
          circle1.rotate(d, (x, y))
      
          circle2 = BezierPath()
          circle2.oval(x - circle_size / 2, y - circle_size / 2, circle_size, circle_size)
          circle2.translate(0, radius)
          circle2.rotate(d + step, (x, y))
          
          dif = circle2.difference(circle1)
          drawPath(dif)
      
      

      In response to https://twitter.com/MauriceMeilleur/status/1242196482717110274

      posted in Code snippets
      monomonnik
      monomonnik