Here is some code to draw a Lissajous table.
Change the func_x and/or func_y (sin or cos) and/or add some value to the delta to get other curves.
Well, actually the curves are just polygons.
# ----------------------
# lissajous table
# ----------------------
# settings
cols = 12
rows = 8
cell_s = 80
r_factor = .8 # fraction of the cell size to have a gap between them
func_x = cos # should be `sin` or `cos`
func_y = sin # should be `sin` or `cos`
delta = 0 #pi/3 # some angle in radians
density = 360 # amount of points per cell – higher values make nicer curve approximations
# ----------------------
# calculated settings
radius = (cell_s * r_factor) / 2
step = (2 * pi) / density
pw = cell_s * (cols + 1)
ph = cell_s * (rows + 1)
x_coords = { (col, d) : func_x(step * (col + 1) * d + pi/2 + delta) * radius for col in range(cols) for d in range(density) }
y_coords = { (row, d) : func_y(step * (row + 1) * d + pi/2) * radius for row in range(rows) for d in range(density) }
# ----------------------
# function(s)
def draw_cell(pos, col, row):
cx, cy = pos
points = [(cx + x_coords[(col, f)], cy + y_coords[(row, f)]) for f in range(density)]
polygon(*points)
# ----------------------
# drawings
newPage(pw, ph)
rect(0, 0, pw, ph)
fontSize(12)
translate(0, ph)
fill(1)
text('δ\n{0:.2f}°'.format(degrees(delta)), (cell_s * (1 - r_factor)/2, -20))
for col in range(1, cols+1):
cx = col * cell_s + cell_s * (1 - r_factor)/2
text('{0}\n{1}'.format(func_x.__name__, col), (cx, -20))
for row in range(1, rows + 1):
cy = row * cell_s + cell_s * (1 - r_factor)
text('{0}\n{1}'.format(func_y.__name__, row), (cell_s * (1 - r_factor)/2, -cy))
fill(None)
stroke(.5)
strokeWidth(1)
for col in range(cols):
for row in range(rows):
draw_cell((cell_s * col + cell_s * 1.5, - cell_s * row -cell_s * 1.5), col, row)